
 
Introduction to the  

Theory of Computation

Set 6 — Context-Free Languages



Context-Free Languages
The shortcoming of finite automata is that 
each state has very limited meaning

• FA have no memory of where they’ve been – 
only knowledge of where they are

• Example: {0n1n | n ≥ 0} is a CFL

Context-free grammars are a more powerful 
method of describing languages



Example Grammar
Grammars use substitution to maintain 
knowledge

S → (S)
S → SS
S → ()

All possible legal parenthesis pairings can 
be expressed by consecutive applications 
of these rules
Is this a regular language?

S → (S)ӕSSӕ()Σ={(,)}



Example Context Free Grammar

(()())(())
S → SS
 → (S)S
 → (S)(S)
 → (SS)(S)
 → (SS)(())
 → (()S)(())
 → (()())(())

The sequence of substitutions is called 
a derivation

S → (S)ӕSSӕ()



Example CFG Parse Tree

S

SS

SS

()()()

S

)(

S

( )

S → (S)ӕSSӕ()



Example 2
S → Sb | Bb
B → aBb | aCb
C → ε

Derivation for aaabbbbb
S → Sb
   → Bbb
   → aBbbb
   → aaBbbbb
   → aaaCbbbbb
   → aaaεbbbbb = aaabbbbb 



Example 2 Parse Tree

S

ε

S

b

B

b

B

a b

B

a bba

C

S → Sb | Bb
B → aBb | aCb
C → ε

aaabbbbb



Example 2

What language does this grammar accept?
{anbm | m > n > 0}

Can this CFG be simplified?
Yes.
Replace B→aCb with B→ab and remove C→ε

S → Sb | Bb
B → aBb | aCb
C → ε



Context-Free Grammar Definition
A context-free grammar is a 4-tuple 

(V,Σ,R,S), where
1. V is a finite set called the variables
2. Σ is a finite set, disjoint from V, 

called the terminals
3. R is a finite set of rules, 

with each rule being a variable and 
a string of variables and terminals

4. S ∈V is the start variable (A,w) ≡ A→w



Definitions
If u, v, and x are strings of variables and 
terminals, and A→x is a rule of the 
grammar, we say uAv yields uxv
 Denoted  uAv ⇒ uxv

If a sequence of rules leads from u to v,  
u ⇒ u1 ⇒ u2 ⇒ … ⇒ v, we denote this

u     v

€ 

*⇒€ 

*⇒
The language of the grammar is 

{w ∈ Σ*  |  S    w}



Example CFG
A → Ab | Bb
B → aBb | ab

V = {A,B}
Σ = {a,b}
R is the set of rules listed above
S = A
The language of this grammar is

{w ∈ {a,b}* | w = anbm, m > n > 0}



Designing CFG’s
Requires creativity
There are some guidelines to help

• Union of two CFG’s
• Converting a DFA to a CFG
• Linked terminals
• Recursive behavior



Designing the Union of CFGs
For the union of k CFGs, design each CFG 
separately with starting variables 
S1, S2, …, Sk and combine using the rule

S → S1 | S2 | … | Sk

What is a CFG for the following language?

{aibjck | i,j,k ≥ 0 and i = j} {aibjck | i,j,k ≥ 0 and j = k}∪

{aibjck | i, j, k ≥ 0 and i = j or j = k}



Example

First design
S1 → S1c | A
A → aAb | ε

Then design 
(use different variables)

S2 → aS2 | B
B → bBc | ε

Finally, add the “unifying” rule
S → S1 | S2

{aibjck | i, j, k ≥ 0 and i = j or j = k}

{aibjck | i,j,k ≥ 0 and j = k}

{aibjck | i,j,k ≥ 0 and i = j}



Converting DFA’s into CFG’s
For each state qi in the DFA, 
make a variable Ri for the CFG.

For each transition rule δ(qi,a)=qk in the DFA,  
add the rule Ri → aRk to the CFG

For each accept state qa in the DFA, 
add the rule Ra → ε
If q0 is the start state in the DFA, 
then R0 is the starting variable in the CFG



DFA to CFG Example

q1

0, 1

q2

0

1

0
q3

1

V = {R1, R2, R3}  ∑ = {0,1}

R1 → 0R3 | 1R2    R2 → 0R1 | 1R3    R3 → 0R3 | 1R3 

R2 → ε
R1 is the start symbol



Linked Terminals
Terminals may be “linked” to one another in 
that they have the same (or related) number 
of occurrences

{0n1n | n ≥ 0} 
{xny2n | n > 0} 

Add terminals simultaneously
S → 0S1 | ε
S → xSyy | xyy



Recursive Behavior
Some languages may be built of pieces that 
are within the language

For example, legal pairing of parentheses

For these languages, you will want a 
recursive rule

For example, S → SS

Not all recursive rules will be that easy!



Example of Recursive Rules
Construct a CFG accepting all strings in 
{0,1}* that have equal numbers of 0’s and 1’s

S → S0S1S | S1S0S | ε

S → A0A1A | A1A0A | ε 
A → S1S0S | S0S1S | ε
   “mutual recursion”



Ambiguity
Consider the CFG ({S},{0,1,+,×},R,S), 
where the rules of R are

S → 0ӕ1ӕS + SӕS × S

Derive the string 0 × 1 + 1 
Draw the associated parse tree



Ambiguity

S → 0ӕ1ӕS + SӕS × S

0 × 1 + 1

S

S S×

S + S0

1 1

S

S S+

S × S 1

0 1

Different parse trees!
(0x(1+1)) = 0 ((0x1)+1) = 1



Definition of Ambiguity
Ambiguity exists when a context-free 
grammar G generates a string w and there 
are two different parse trees that generate w

• Different derivations that differ only in order 
do not indicate ambiguity

({A,S,T}, {♡,✎,!}, {S→!AT,  A→♡, T→✎,}, S)

Derivations of !♡✎
S→!AT 
  →!♡T 
  →!♡✎

S→!AT 
  →!A✎ 
  →!♡✎

S

! A T

♡ ✎

Parse Tree



Derivation & Ambiguity
A derivation of a string w in a grammar G is 
a leftmost derivation if every step of the 
derivation replaced the leftmost variable
A string is derived ambiguously in CFG G if 
it has two or more different leftmost 
derivations

S→!AT 
  →!♡T 
  →!♡✎

S→!AT 
  →!A✎ 
  →!♡✎

leftmost ¬leftmost



Derivation & Ambiguity
A derivation of a string w in a grammar G is 
a leftmost derivation if every step of the 
derivation replaced the leftmost variable
A string is derived ambiguously in CFG G if 
it has two or more different leftmost 
derivations
The grammar G is ambiguous if it generates 
some string ambiguously

• Some grammars are inherently ambiguous



Chomsky Normal Form
Method of simplifying a CFG

Definition: A context-free grammar is in Chomsky 
normal form if every rule is of one of the 
following forms

   A → BC
A → a

where a is any terminal, A is any variable, 
and B and C are any variables other than the 
start variable.

If S is the start variable then
the rule S → ε is the only permitted ε rule

(Note that some CNF formalisms allow B & C to be terminals or variables.)



CFG and Chomsky Normal Form

Theorem: Any context-free language is 
generated by a context-free grammar 
in Chomsky normal form.

Proof idea: Convert any CFG to one in 
Chomsky normal form by removing 
or replacing all rules in the wrong 
form

1. Add a new start symbol
2. Eliminate ε rules of the form A → ε
3. Eliminate unit rules of the form A → B
4. Convert remaining rules into proper form



Convert a CFG to Chomsky Normal Form
1. Add a new start symbol
☞ Create the following new rule

S0 → S

where S is the start symbol and S0 is not 
used in the CFG



Convert a CFG to Chomsky Normal Form

2. Eliminate all ε rules A → ε, where A is 
not the start variable

☞ For each rule with an occurrence of A 
on the right-hand side, add a new rule 
with the A deleted

R → uAv becomes R → uAv | uv
R → uAvAw becomes R → uAvAw | uvAw | uAvw | uvw

☞ If we have R → A, add R → ε unless 
we had already removed R → ε



Convert a CFG to Chomsky Normal Form
3. Eliminate all unit rules of the form A → B

☞ For each rule B → u, add a new rule 
A → u, where u is a string of terminals 
and variables, unless this rule had 
already been removed

☞ Repeat until all unit rules have been 
replaced



Convert a CFG to Chomsky Normal Form
4. Convert remaining rules into proper form

What’s left?

☞ Replace each rule A → u1u2…uk, where 
k ≥ 3 and ui is a variable or a terminal, 
with k–1 rules

A → u1A1    A1 → u2A2    …    Ak-2 → uk-1uk



Convert a CFG to Chomsky Normal Form
4. Convert remaining rules into proper form

What’s left?
☞ The formalism requires B and C to be 

variables in A → BC, so must move all 
terminals to unit productions
For every terminal on the right of a nonunit 
production, add a substitute variable

A → bC  becomes   A → BC & B → b 



Example

S → S1 | S2 
S1 → S1b | Xb
X → aXb | ab | ε
S2 → S2a | Ya 
Y → bYa | ba | ε

Step 1: Add a new start symbol



Example
S0 → S
S → S1 | S2 
S1 → S1b | Xb
X → aXb | ab | ε
S2 → S2a | Ya
Y → bYa | ba | ε

Step 2: Eliminate ε rules



Example
S0 → S
S → S1 | S2 
S1 → S1b | Xb | b
X → aXb | ab
S2 → S2a | Ya | a
Y → bYa | ba

Step 3: Eliminate all unit variable rules



Example
S0 → S1b | Xb | b | S2a | Ya | a 
S → S1b | Xb | b | S2a | Ya | a 
S1 → S1b | Xb | b
X → aXb | ab
S2 → S2a | Ya | a
Y → bYa | ba

Step 4: Convert remaining rules to 
proper form



Example
S0 → S1B | XB | b | S2A | YA | a 
S → S1B | XB | b | S2A | YA | a 
S1 → S1B | XB | b
X → AX1 | AB
X1 → XB
S2 → S2A | YA | a
Y → BY1 | BA
Y1 → YA
A → a    B → b

71



PushDown Automata (PDA)
Similar to finite automata, but for CFL’s
Finite automata are not adequate for CFL’s 
because they cannot keep track of what 
what’s previously been done

• At any point, we only know the current state, 
not previous states

Need memory
• PDA are finite automata with a stack



Finite Automata and PDA Schematics

State 
control

a   a   b   b  

State 
control

a   a   b   b  

x 
y 
z

FA

PDA

Stack: 
Infinite LIFO  

(last in first out) 
device



Example

read 0  and 
push 0 on stack

read ε  and 
push $ on stack

read 1  and 
pop 0 off stack

read ε  and 
pop $ off stack

Language accepted:  {0n1n | n ≥ 0}

read ε  and 
push ε on stack



Differences Between PDA’s and NFA’s
Transitions read a symbol of the string and 
push a symbol onto or pop a symbol off of 
the stack
Stack alphabet is not necessarily the same 
as the alphabet for the language

 e.g., $ marks bottom of stack in previous 
(0n1n) example



Definition of Pushdown Automaton
A pushdown automaton is a 6-tuple  

(Q,Σ,Γ,δ,q0,F), where Q, Σ, Γ, and F are all 
finite sets, and

1. Q is the set of states
2. Σ is the input alphabet 
3. Γ is the stack alphabet 
4. δ: Q × Σε × Γε → P(Q × Γε) 

is the transition function
5. q0 ∈ Q is the start state, and
6. F ⊆ Q are the accept states.



Let w be a string in Σ* and M be a PDA.
w is in L(M) ⇔ w can be written w = w1w2…wn,
where each wi ∈ Σε, and there exist 
r0,r1,…,rn ∈ Q and s0,s1,…,sn ∈ Γ* satisfying 
the following:

• r0=q0 and s0=ε 
M starts in the start state with an empty stack

• (ri+1,b) ∈ δ(ri,wi+1,a), where si = at and si+1 = bt 
for some a,b ∈Γε and t ∈Γ*

M moves according to transition rules for the 
state, input, and stack

• rn ∈ F
Accept state occurs at input end

Strings Accepted by a PDA



The Transition Rule
(ri+1,b)∈δ(ri,wi+1,a), where si = at and si+1 = bt  
for some a,b ∈Γε and t ∈Γ* 

 The top symbol is
• Pushed if a=ε and b≠ε
• Popped if a≠ε and b=ε
• Changed if a≠ε and b≠ε
• Unchanged if a=ε and b=ε

 Symbols below the top of the stack may be 
considered, but not changed

 That is t ’s role

(ri+1,b)∈δ(ri,wi+1,a), where si = at and si+1 = bt  
for some a,b ∈Γε and t ∈Γ* 



Example
 Find δ for the PDA that accepts all 

strings in {0,1}* with the same number 
of 0’s and 1’s
• Need to keep track of “equilibrium point”  

so use a $ on the stack
• If stack top is not $, it contains the symbol 

currently dominating in the string



Example
 Find δ for the PDA that accepts all 

strings in {0,1}* with the same number 
of 0’s and 1’s
• Push a symbol on the stack as it is read if

 It matches the top of the stack, or
 The top of stack is $

• Pop the symbol off the top of the stack if it 
reads a 0 and the top of stack is 1 or it 
reads a 1 and the top of stack is 0.



Example

ε,ε→$

0,$→0$ 
0,0 →00 
0,11 →1 
0,1$ →$

1,$→1$ 
1,1 →11 
1,00 →0 
1,0$ →$

ε,$→ ε



Example

0,$→0$ 
0,0 →00 
0,1 →ε

1,$→1$ 
1,1 →11 
1,0 →ε

This PDA is equivalent to the one on the previous slide

ε,ε→$ ε,$→ ε



Example

0,$→0$ 
0,0 →00 
0,1 →ε

1,$→1$ 
1,1 →11 
1,0 →ε

ε,ε→$ ε,$→ ε

0 1 1 1 0 0
⬆



Example

0,$→0$ 
0,0 →00 
0,1 →ε

1,$→1$ 
1,1 →11 
1,0 →ε

ε,ε→$ ε,$→ ε

0 1 1 1 0 0 ✔



Example
Nested parentheses

ε,ε→$

(, ε→(

ε,$→ ε

),( → ε



Equivalence of PDAs and CFLs
Theorem: A language is context free if and 

only if some pushdown automaton 
recognizes it

Proved in two lemmas – 
one for the “if” direction and 
one for the “only if” direction



CFLs Are Recognized by PDAs
Lemma:  If a language is context free, then 

some pushdown automaton recognizes it
Proof idea: 

Construct a PDA following CFG rules



Constructing the PDA
You can read any symbol in Σ when that 
symbol is at the top of the stack

• Transitions of the form a,a→ε
The rules indicate what is pushed onto the 
stack: when a variable A is on top of the 
stack and there is a rule A→w, you pop A 
and push w
You go to the accept state only if the stack 
is empty



Informal Description of the PDA
Place $ and start variable on stack
Repeat forever…
1. If stack top is variable A, 

nondeterministically select an A rule and 
substitute the string on the RHS for A

2. If stack top is terminal a, 
read next symbol from input and compare 
to a. If match, repeat. If no match, reject 
this branch.

3. If stack top is $, enter accept state. 
Accept input if no more input remains.



CFG’s are recognized by PDA’s
Format of the new PDA

Start by pushing the 
start variable and 
stack bottom marker 
(one at a time)

Have a transition for 
each rule replacing 
the variable with its 
right hand side

Have a transition that 
allows us to read each 
alphabet symbol if it is 
at the top of the stack

Finish only if the 
stack is empty

qstart qloop qaccept
ε, ε →S$ ε, $ →ε

a,a→ε

ε,A→w



Idea of PDA construction for A→xBz

State 
control

a   b  

A 
t

State 
control

a   b  

x 
B 
z 
t



Actual construction for A→xBz

ε,A→z ε, ε →B

ε, ε →x

Notationally, we say  δ(q,ε,A)=(q,xBz)



Constructing the PDA
Q = {qstart, qloop, qaccept}∪E, where E is the 
set of states used for replacement rules 
onto the stack
Σ (the PDA alphabet) is the set of terminals 
in the CFG
Γ (the stack alphabet) is the union of the 
terminals and the variables and {$} (or 
some other suitable placeholder)



Constructing the PDA
δ is comprised of several rules

δ(qstart,ε,ε)=(qloop,S$)
Start with placeholder on the stack and with 

the start variable
δ(qloop,a,a)=(qloop,ε) for every a∈Σ

Terminals may be read off the top of the stack
δ(qloop,ε,A)=(qloop,w) for every rule A→w

Implement replacement rules
δ(qloop,ε,$)=(qaccept,ε)

Accept when the stack is empty



Example

qstart qloop qaccept
ε, ε →S$ ε, $ →ε

(,(→ε 
),)→ε

ε,S→SS 

ε,S→(S) 

ε,S→()

Read (()())
S → SS | (S) | ()



Recap
Finite automata (both deterministic and 
nondeterministic) accept regular languages

– Weakness: no memory

Pushdown automata accept context-free 
languages

• Add memory in the form of a stack
– Potential Weakness: stack is restrictive

How can we tell that a language is not CF?



The pumping lemma for regular languages
The pumping lemma for regular languages  
depends on the structure of the DFA and 
the fact that a state must be revisited

• Only a finite number of states

x

y

z



The pumping lemma for CFG’s
What might be repeated in a CFG?

• The variables

T
R

R

u v x y z

v & y will be repeated simultaneously

T → uRz 
R → vRyӕx



The pumping lemma for CFG’s

T
R

R

u v x y z

T
R

u
v y

z

R

x yv

R

T → uRz 
R → vRyӕx



The pumping lemma for CFG’s

T
R

R

u v x y z

T
R

u
x

z

T → uRz 
R → vRyӕx



The pumping lemma for CFL’s
Theorem:  If A is a context-free language, 

then there is a number p (the pumping 
length) where, if s is any string in A of 
length at least p, then s may be divided 
into five pieces s=uvxyz satisfying the 
conditions:

1. For each i ≥ 0,  uv ixy iz ∈ A
2. |vy | > 0
3. |vxy | ≤ p



Finding the pumping length of a CFL
Let b equal the longest right-hand side of 
any rule (assume b > 1)

• Each node in the parse tree has at most b 
children

• At most bh nodes are h steps from the start 
node

Let p equal b|V|+2, where |V| is the number of 
variables (b|V|+2 could be huge!)

• Tree height is at least |V|+2
••• •••
••• •••

•••
•••
•••

•••



Example
Show A is not context free, where  

A = {an | n is prime}
Proof:  

Assume A is context-free and let p be the 
pumping length of A.
Let w=an for any n≥p.
By the pumping lemma, w=uvxyz such 
that |vxy |≤p, |vy |>0, and 
uv ixy iz ∈ A  for all i=0,1,2,…



Example (cont.)
Show A is not context free, where  

A = {an | n is prime}
Clearly, vy=ak for some k
Consider the string uvn+1xyn+1z

This string adds n copies of ak to w 
– i.e., this is an+nk

Since the exponent is n(1+k), the length of 
the string is not prime, thus the string is 
not in A, which contradicts the pumping 
lemma.  Therefore, A is not context free.



If A and B are context free languages then:

 AR is a context-free language ✔

A* is a context-free language ✔

A ∪ B is a context-free language ✔

Ā is not necessarily a context-free language

Is A ∩ B a context-free language?

Is Ā (complement) a context-free language?

Closure Properties of CFLs



Closure Properties of CFLs
If A and B are context free languages then:

Is A ∩ B a context-free language?
Consider  A = { ai bj ck | i = j }  and  B = { ai bj ck | j = k }

A ∩ B = { ai bj ck  |  i = j = k }

A:  SA → XC,   X → aXb | ε,   C → cC | ε
B:  SB → AY,   A → aA | ε,    Y → bYc | ε

Does this language satisfy the pumping lemma?

s∈L, |s|≥p ⇒ s=uvxyz, uvixyiz ∈L ∀i ≥ 0
|vy| > 0  
|vxy| ≤ p



Closure Properties of CFLs
Consider  A = { ai bj ck | i = j }  and  B = { ai bj ck | j = k }

A ∩ B = { ai bj ck  |  i = j = k }

Does this language satisfy the pumping lemma?
s∈L, |s|≥p ⇒ s=uvxyz, uvixyiz ∈L ∀i ≥ 0

|vy| > 0  
|vxy| ≤ p

Try s = apbpcp

|vxy| ≤ p ⇒ vxy contains at most 2 different symbols
|vy| > 0 ⇒ vy contains at least one symbol

uv2xy2z ∉ A ∩ B  so  A ∩ B is not a CFL



Closure Properties of CFLs
If A and B are context free languages then:

 AR is a context-free language ✔

A* is a context-free language ✔

A ∪ B is a context-free language ✔

A  is not necessarily a context-free language

A ∩ B is not necessarily a context-free language


