Introduction to the
Theory of Computation

Set 6 — Context-Free Languages

Context-Free Languages

The shortcoming of finite automata is that
each state has very limited meaning

* FA have no memory of where they’ve been —
only knowledge of where they are

 Example: {On1n| n = 0}

Context-free grammars are a more powerful
method of describing languages

Example Grammar

Grammars use substitution to maintain
knowledge

S — (S5)
0} o ea
S — ()

All possible legal parenthesis pairings can

be expressed by consecutive applications
of these rules

S—(S)[ss]| ()

Is this a regular language?

Example Context Free Grammar
S—(S)|ss]| ()

(00)()
S — SS

—(S)S

— (S)(S)
— (SS)(S)
— (SS)(()
= ((0S)(0)
= (00X0)

The sequence of substitutions is called
a derivation

Example CFG Parse Tree
S—(S)[|ss]| ()

< 7N
o

S' S

\
(0 0) C 0)

Example 2

S —-=SblBb
B - aBbl aCb
C—sc¢

Derivation for aaabbbbb
S —Sb
— Bbb
— aBbbb
— aaBbbbb
— aaaCbbbbb
— aaacbbbbb = aaabbbbb

Example 2 Parse Tree

S—-=SblBb
B - aBbl aCb
C—sc¢

QY v - J y S - T, QN

.

a a a €

N

aaabbbbb

b b b b

Example 2

S—-=SblBb
B —- aBbl aCb
C—sc¢

What language does this grammar accept?
{anbm I m>n >0}
Can this CFG be simplified?

Yes.

Replace B—aCb with B—ab and remove C—¢

Context-Free Grammar Definition

A context-free grammar is a 4-tuple
(V,.2,R,S), where

1. V is a finite set called the variables

2. 2 is a finite set, disjoint from V,
called the terminals
3. R is a finite set of rules,

with each rule being a variable and
a string of variables and terminals

4. S €V is the start variable (A.w) = A>w

Definitions

If u, v, and x are strings of variables and
terminals, and A—Xx is a rule of the

grammar, we say UAv yields uxv
Denoted uAv = uxv

If a sequence of rules leads from u to v,
u=u, = u,= ... =V, we denote this

U=V
The language of the grammar is
(wex | S&w)

Example CFG

A— Abl| Bb
B —aBblab
V ={A,B}
> ={a,b}

R is the set of rules listed above
S=A

The language of this grammar is
{we{a,b}' | w=arbm m>n>0}

Designing CFG’s

Requires creativity

There are some guidelines to help
e Union of two CFG’s
e Converting a DFA to a CFG
* Linked terminals
* Recursive behavior

Designing the Union of CFGs

For the union of k CFGs, design each CFG
separately with starting variables
S,, S,, ..., S, and combine using the rule

S—>S,1S,1...1S,

What is a CFG for the following language?
{aibickl i, j, k=z0andi=]orj=k}

{aibick | i,j,k =0 and i = j} U {aibick | i,j,k =0 and j = k}

{aibickl I, j, k=0andi=jor =k} Example

First design {aibick | i,j,k =0 and i = j}

Then design {aibick | i,J,k =20 and | = k}

Finally, add the “unifying” rule

Converting DFA’s into CFG’s

For each state q; in the DFA,
make a variable R, for the CFG.

For each transition rule 5(q;,a)=q, in the DFA,
add the rule R, — aR, to the CFG

For each accept state q_ in the DFA,
add therule R, — ¢

If q, is the start state in the DFA,
then R, is the starting variable in the CFG

DFA to CFG Example

V ={R,, R,, R3} 2 ={0,1}
R, - OR;I 1R, R, —OR,I1R; R;— OR;I 1R,

R, — ¢

R, is the start symbol

Linked Terminals

Terminals may be “linked” to one another In
that they have the same (or related) number
of occurrences

{On1n]| n =0}
{xny2n | n > 0}

Add terminals simultaneously
S—0S11l¢

S — xSyy | xyy

Recursive Behavior

Some languages may be built of pieces that
are within the language

For example, legal pairing of parentheses

For these languages, you will want a
recursive rule

For example, S — SS

Not all recursive rules will be that easy!

Example of Recursive Rules

Construct a CFG accepting all strings in
{0,1}" that have equal humbers of 0’s and 1’s

S —S0S1S1S1S0S | ¢

S — AOA1AI A1AOAI ¢
A — S1S0S 1 S0S1S | ¢

“mutual recursion”

Consider the CFG ({S},{0,1,+,x},R,S),
where the rules of R are

S—>0|1|/S+S|SxS
Derive the string 0 x 1 + 1

Draw the associated parse tree

Ambiguity

S—-0|1|S+S|SxS
Ox1+1

Different parse trees!

(Ox(1+1)) =0 (0x1)+1) =1

Definition of Ambiguity

Ambiguity exists when a context-free
grammar G generates a string w and there
are two different parse trees that generate w

 Different derivations that differ only in order
do not indicate ambiguity

({A,S, T}, {0\, 2}, {S—DAT, A—0), T-\,}, S)

Derivations of ©»Q)\\ Parse Tree
S—HAT || SH>AT S

SAOT || SdAN / I\

ENCIVA Y 1WA =

I
VAN

Derivation & Ambiguity

A derivation of a string w in a grammar G is
a leftmost derivation if every step of the
derivation replaced the leftmost variable

A string is derived ambiguously in CFG G if
it has two or more different leftmost
derivations

leftmost -leftmost

S—>AT S—DAT
—>O)T —DAN
—D0ON —D0ON

Derivation & Ambiguity

A derivation of a string w in a grammar G is
a leftmost derivation if every step of the
derivation replaced the leftmost variable

A string is derived ambiguously in CFG G if
it has two or more different leftmost
derivations

The grammar G is ambiguous if it generates
some string ambiguously

« Some grammars are inherently ambiguous

Chomsky Normal Form
Method of simplifying a CFG

Definition: A context-free grammar is in Chomsky
normal form if every rule is of one of the
following forms

A — BC
A—a
where a is any terminal, A is any variable,
and B and C are any variables other than the
start variable.
If S is the start variable then
the rule S — ¢ is the only permitted ¢ rule

(Note that some CNF formalisms allow B & C to be terminals or variables.)

CFG and Chomsky Normal Form

Theorem: Any context-free language is
generated by a context-free grammar
in Chomsky normal form.

Proof idea: Convert any CFG to one in
Chomsky normal form by removing
or replacing all rules in the wrong
form

1. Add a new start symbol
Eliminate € rules of the form A — ¢

2.
3. Eliminate unit rules of the form A — B
4. Convert remaining rules into proper form

Convert a CFG to Chomsky Normal Form
1. Add a new start symbol

= Create the following new rule

S, — S

where S is the start symbol and S, is not
used in the CFG

Convert a CFG to Chomsky Normal Form

2. Eliminate all € rules A — €, where A is
not the start variable

= For each rule with an occurrence of A
on the right-hand side, add a new rule
with the A deleted

R —uAv becomes R— uAv | uv
R —uAvAw becomes R— uAvAw | uvAw | uAvw | uvw

= |f we have R — A, add R — € unless
we had already removed R — ¢

Convert a CFG to Chomsky Normal Form
3. Eliminate all unit rules of the form A — B

&= For each rule B — u, add a new rule
A — u, where u is a string of terminals

and variables, unless this rule had
already been removed

1= Repeat until all unit rules have been
replaced

Convert a CFG to Chomsky Normal Form
4. Convert remaining rules into proper form
What's left?

v~ Replace each rule A — u,u,...u,, where
k = 3 and u; is a variable or a terminal,
with k-1 rules

Convert a CFG to Chomsky Normal Form

4. Convert remaining rules into proper form
What’s left?

= The formalism requires B and C to be
variables in A—BC, so must move all
terminals to unit productions

For every terminal on the right of a nonunit
production, add a substitute variable

A—bC becomes A—BC &B—b

Example

S—S,1S,

S, — S,bl Xb
X—aXblabl ¢
S, > S,al Ya
Y —DbYalbalc¢

Step 1: Add a new start symbol

Example
S,— S
S—S,18S,
S, —S,blXb
X—aXblablce¢
S, —> S,al Ya
Y —bYalbal ¢

Step 2: Eliminate € rules

Example
S,— S
S—S,18S,
S,—S.,blIXblb
X—aXblab
S,—~>S,alYala
Y — bYal ba

Step 3: Eliminate all unit variable rules

Example

S,—~S,bIXblblS,alYala
S—S,biXblblS,alYala
S;,—>S,blXblb

X —aXbl ab
S,—>S,alYala

Y — bYal ba

Step 4: Convert remaining rules to
proper form

Example

S,—~S,BIXBIbIlS,AlYAla
S—SBIXBIbIS,AlYAla
S,—S,BIXBlb

X — AX, | AB

X, — XB

S,—S,AlYAla

Y — BY, | BA

Y,—= YA

A—a B—b

PushDown Automata (PDA)
Similar to finite automata, but for CFL’s

Finite automata are not adequate for CFL’s
because they cannot keep track of what
what’s previously been done

e At any point, we only know the current state,
not previous states

Need memory
* PDA are finite automata with a stack

Finite Automata and PDA Schematics

--
* *

EA State

| control | ; ’ ; ‘ o ’ 1
contro . ’ . ‘ 5 ’ 5
Stack: ‘»

X
Infinite LIFO | y

(last in first out)
device z
N\

* *
--

Example

read € and read € and read € and

ush $ on stack push € on stack pop $ of f stack
o llle

read O and read 1 and
pUSh O on stack pop O off stack

Language accepted: {On1n| n = 0}

Differences Between PDA’s and NFA’s

Transitions read a symbol of the string and
push a symbol onto or pop a symbol off of
the stack

Stack alphabet is not necessarily the same
as the alphabet for the language

e.g., $ marks bottom of stack in previous
(On1n) example

Definition of Pushdown Automaton

A pushdown automaton is a 6-tuple
(Q,%,I,d,q,4,F), where Q, %, ', and F are all

finite sets, and
Q is the set of states

1.

2. X is the input alphabet

3. I'is the stack alphabet

4. 5:QAxZ_xI', = PQxT))

Is the transition function

g, € Q is the start state, and

o

6. F C Q are the accept states.

Strings Accepted by a PDA

Let w be a string in Z*and M be a PDA.
wis in L(M) & wcan be written w=w,w,...w,,

where each w; € X_, and there exist
Fosfqs--F, € Q @and s,,s,,...,s, € I satisfying
the following:
e To=qy and s,=¢
M starts in the start state with an empty stack
e (ri,1,b) € 9(r;,w;,4,a), where s;=atand s;,, =bt
for some a,b €l and tcl™

M moves according to transition rules for the
state, input, and stack

- r.€F
Accept state occurs at input end

The Transition Rule

(r:,.q,0)E8(r;, W, ,@), where s,=atand s, ,=bt

for some a,b€rl’, and t<I™

The top symbol is

- Pushed if a=¢ and b=¢

- Popped if a=¢ and b=¢

- Changed if a=¢c and b=¢

- Unchanged if a=¢ and b=¢
Symbols below the top of the stack may be
considered, but not changed

That is t’s role

Example

Find 6 for the PDA that accepts all
strings In {0,1}" with the same number
of 0's and 1’s

* Need to keep track of “equilibrium point”
so use a $ on the stack

o If stack top is not $, it contains the symbol
currently dominating in the string

Example

Find 6 for the PDA that accepts all

strings In {0,1}" with the same number
of O’s and 1’s

 Push a symbol on the stack as it is read if

It matches the top of the stack, or
The top of stack is $

* Pop the symbol off the top of the stack if it
reads a 0 and the top of stack is 1 or it
reads a 1 and the top of stack is 0.

Example

1,$—1%
1111

1,00 =0
10$ —%

B

0,$—0%
0,0 —-00

0,11 -1
01% —=$

Example

1,$—1%
1111
10 —¢

0,$—0%
0,0 =00
0,1 —¢

This PDA is equivalent to the one on the previous slide

O 11100

4*0 £ c—$ Q £$— ¢

Example

1,$—1%
11-11
10 —¢

0,$—0%
0,0 =00
0,1 —¢

O

011100 ¢

Example

1,$—1%
11-11
10 —¢

4*0 £ c—$ Q £$— ¢

0,$—0%
0,0 =00
0,1 —¢

©

Example

Nested parentheses

Equivalence of PDAs and CFLs

Theorem: A language is context free if and
only if some pushdown automaton
recognizes it

Proved in two lemmas —
one for the “if” direction and
one for the “only if” direction

CFLs Are Recognized by PDAs

Lemma: If a language is context free, then
some pushdown automaton recognizes it

Proof idea:
Construct a PDA following CFG rules

Constructing the PDA

You can read any symbol in £ when that
symbol is at the top of the stack

 Transitions of the form a,a—¢

The rules indicate what is pushed onto the
stack: when a variable A is on top of the
stack and there is a rule A—w, you pop A

and push w

You go to the accept state only if the stack
IS empty

Informal Description of the PDA
Place $ and start variable on stack

Repeat forever...

1. If stack top is variable A,
nondeterministically select an A rule and
substitute the string on the RHS for A

2. If stack top Is terminal a,
read next symbol from input and compare
to a. If match, repeat. If no match, reject
this branch.

3. If stack top is $, enter accept state.
Accept input if no more input remains.

CFG’s are recognized by PDA’s

Format of the new PDA

—

£,A—W

Have a transition for
each rule replacing
the variable with its
right hand side

aa—¢&

A\

£, € >S%$ e, $ —¢
"\ Qstart ’ qloop '\’qaccep

Finish only if the
stack is empty

Start by pushing the
start variable and
stack bottom marker
(one at a time)

Have a transition that

allows us to read each
alphabet symbol if it is
at the top of the stack

Idea of PDA construction for A—=xBz

State
control

a‘b

State
control

>

X
B
Z
T
2%

a‘b

Actual construction for A—=xBz

E —
M}Q ne Q
Q‘ £, € —=>X

Notationally, we say 0(q,€,A)=(q,xBz)

Constructing the PDA

Q = {diart Qioop? Yacceptt JE; Where E is the

set of states used for replacement rules
onto the stack

> (the PDA alphabet) is the set of terminals
in the CFG

I" (the stack alphabet) is the union of the

terminals and the variables and {$} (or
some other suitable placeholder)

Constructing the PDA

0 is comprised of several rules
6(qs‘,tartlsi8)=(q|00pﬂs$)

Start with placeholder on the stack and with
the start variable

0(d)00p:@58)=()00p:€) fOr every acx
Terminals may be read off the top of the stack
0(Q)00p:€5A)=(A)00psW) fOr every rule A—w
Implement replacement rules

6(qIOOp!8!$)=(qac(;(:,-pt!i:)
Accept when the stack is empty

s—-ssi(s)l(-xample

Read (()())

£,5—SS
£,5—(5)
£,5—()

£, e —=5S% e, $ —¢
qs’rar’r qloop accepT

(,(%U

).)—¢

Recap

Finite automata (both deterministic and
nondeterministic) accept regular languages

- Weakness: no memory

Pushdown automata accept context-free
languages
 Add memory in the form of a stack
- Potential Weakness: stack is restrictive

How CAN WE TELL THAT A LANGUAGE 1S NOT CF?

The pumping lemma for regular languages

The pumping lemma for regular languages
depends on the structure of the DFA and
the fact that a state must be revisited

* Only a finite number of states

%{7

The pumping lemma for CFG’s

What might be repeated in a CFG?
* The variables

T = uRz
R = vRy | x

v & y will be repeated simultaneously

The pumping lemma for CFG’s

T = uRz
R = VRy | x

T

AN

X

The pumping lemma for CFG’s

T = uRz
R = VRy | x

ZANa

The pumping lemma for CFL’s

Theorem: If Ais a context-free language,
then there is a number p (the pumping
length) where, if s is any string in A of
length at least p, then s may be divided
into five pieces s=uvxyz satisfying the
conditions:

1. Foreachi=0, uvixyize A
2. lvyl >0
3. lvxyl <p

Finding the pumping length of a CFL

Let b equal the longest right-hand side of
any rule (assume b > 1)

« Each node in the parse tree has at most b
children

At most bh nodes are h steps from the start
node

variables
* Tree height is at least |VI+2

Example

Show A is not context free, where
A={arl nis prime}

Proof:
Assume A is context-free and let p be the

pumping length of A.
Let w=an for any n=p.

By the pumping lemma, w=uvxyz such
that lvxyl<p, lvyl>0, and
uvixyize A for all i=0,1,2,...

Example (cont.)

Show A is not context free, where
A={arl nis prime}

Clearly, vy=ak for some k

Consider the string uvn+ixyn+iz

This string adds n copies of akto w
— i.e., this Is antnk

Since the exponent is n(1+k), the length of
the string is not prime, thus the string is
not in A, which contradicts the pumping
lemma. Therefore, A is not context free.

Closure Properties of CFLs

If A and B are context free languages then:
AR Is a context-free language v/
A* is a context-free language v

A U B Is a context-free language v/
Is A (complement) a context-free language ?

Is A N B a context-free language ?

Closure Properties of CFLs

If A and B are context free languages then:

Is A N B a context-free language ?

Consider A ={aibickli=j} and B={aibicklj=k}

A: SA—=> XC, X—=aXbleg, C—>cCle
B: S>> AY, A—-aAle, Y —bYcle

AN B={abick | i=zj=k}
Does this language satisfy the pumping lemma?

sclL, Islzp = s=uvxyz, uvixyizel Vi=0
vyl >0
lvxyl < p

Closure Properties of CFLs
Consider A ={aibickli=j} and B={albicklj=k}
AN B={aibick | i=j=k}

Does this language satisfy the pumping lemma?

sclL, Isl=zp = s=uvxyz, uvixyizcl Vi=0
vyl >0
lvxyl < p

Try s = arbrcp

vyl >0 = vy contains at least one symbol

lvxyl =p = vxy contains at most 2 different symbols
uv2xy2z ¢ ANB so ANBis nota CFL

Closure Properties of CFLs

If A and B are context free languages then:
AR Is a context-free language v
A* is a context-free language v/

A U B is a context-free language v/

A 1s not necessarily a context-free language

A N B Is not necessarily a context-free language

